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ABSTRACT 

Spontaneous enthalpy-evolution processes reported previously for vapor-deposited non- 
crystalline samples of solid butyronitrile were analyzed in terms of the equations of 
Kohlrausch, Wil~ams and Watts (KWW), and of Adam and Gibbs (AG). The application of 
the KWW equation showed that the enthaIpy relaxation deviated si~fi~antly from exponen- 
tial behavior. The fractional exponent j3 characterizing the non-exponential nature was found 
to be 0.07 at 83.8 K, 0.11 at 89.7 K and 0.21 at 95.0 K. The significant deviation of fi from 
unity reflects the extremely high fictive temperature of the specimen. The AG equation fitted 
the relaxation data well suggesting that the chemical potential Ap hindering the cooperative 
rearrangement of molecules at each temperature was almost constant. The results were 
compared with other data derived from glasses prepared by conventional cooling of liquids. 

INTRODUCTION 

It is not unusual during the continuous cooling of a disordered system for 
some aspects of the system to fail to maintain thermal equilibrium [l]. The 
most dramatic examples of such freezing transitions are found in glass-for- 
ming materials [2,3]. Real glass-forming liquids of molecular, ionic, and 
polymeric origins exhibit some common properties around their glass transi- 
tion temperatures, such as sudden decreases in the heat capacity and 
associated thermodyn~c quantities, non-exponential relaxations of various 
properties, and a temperature-dependent activation enthalpy for structural 
relaxation [4]. A central problem in the study of glasses is that of under- 
standing the nature of the relaxation processes in the liquid and glassy states 
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It is now recognized that glass-forming ability is almost a general prop- 
erty of condensable matter. Vapor deposition 163 is a powerful technique for 
producing non-c~stalline solids. The method extracts rapidly the thermal 
energy of molecules and produces a non-c~stalline solid in a molecule-by- 
molecule fashion. 

In a previous paper [7], we reported a new type of adiabatic calorimeter 
for producing vapor-deposited material and the successful production of 
non-crystalline samples of solid butyronitrile. The following is a brief 
synopsis of the expe~mental results. (a) Both the vapor-quenched (VQ) and 
the liquid-quenched (LQ) samples of butyronitrile exhibit heat capacity 
jumps characteristic of the glass transition at the same temperature 97 K. (b) 
The excess configurational enthalpy of the VQ sample is much higher than 
that of the LQ sample. For the VQ sample deposited at 40 R, the configura- 
tional enthalpy was 1.33 kJ mol-‘, compared with 0.08 kJ mol-’ for the LQ 
sample, indicating the fo~ation of a non-crystalline solid with high fictive 
temperature [8]. (c) Enthalpy stabilization began to occur at much Jower 
temperatures for the VQ samples than that for the LQ sample. The rate of 
enthalpy relaxation of the VQ sample observed at three different tempera- 
tures showed highly non-exponential behavior. 

Such a non-exponential relaxation is known to be a characteristic feature 
of conventional glasses prepared by cooling liquids around and below their 
glass transition range. Many empirical and theoretical equations have been 
proposed to reproduce the experimental data for various kinds of liquid. It is 
the purpose of the present paper to examine whether these equations can be 
applied to a vapor-deposited non-crystalline solid far from equilib~um. 

SOME PROPOSED EQUATIONS FOR RELAXATION 

The temperature dependence of the structural relaxation time when there 
is a marked deviation from the classical Arrhenius behavior is well expressed 
by the following empirical relation, known as the Vogel, Tammann and 
Fulcher (VTF) equation [9,10] 

In 7=A -tB/(T- T,) (I) 

where T, is the temperature at which the relaxation time becomes infinity 
and may be replaced by the Kauzmann temperature & ill]. The Kauzmann 
temperature is defined as the temperature at which the excess configura- 
tional entropy of the liquid vanishes [12]. This equation, however, holds only 
in a state close to equilibrium near the glass transition temperature. In fact, 
spontaneous heat evolution in the VQ sample of butyronit~le was observed 
far below the Kauzmann temperature T,, which was calculated later to be 
81.2 K. This provides evidence that the VTF equation cannot be applied 
directly to relaxation processes occurring in a state far from equilibrium. 
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A variety of experiments have shown that the decay of density or 
enthalpy in a liquid can be expressed over a period of time by the 
Kohlrausch-Williams-Watts (KWW) empirical equation 1131, 

0<p<1 (2) 
where cp(t) is the relaxation function, 7 is the relaxation time and J3 is a 
constant characteristic of the distribution of the relaxation times. Obviously 
/3 = 1 corresponds to exponential decay. Therefore, /3 reflects the non-ex- 
ponential nature of the relaxation and is called the fractional exponent. The 
equation was introduced in 1847 by Kohlrausch [14] for describing the 
viscoelastic property of plastics. Williams and Watts [15] showed later that 
this function can be transformed analytically to give the frequency-depen- 
dent dielectric perrnittivity if fi is chosen to be 0.5. A numerical calculation 
has been performed to find the ~stribution for /3 = 0.1 to 0.9 1161. In the 
glass transition region, there exists a wide dist~bution of the relaxation 
times [l&17]. In this respect, the equation has the advantage of replacing a 
complicated distribution of the relaxation times by the single parameter 8. 
This exponent is usually, but not always, close to 0.5 but may differ for 
different relaxing quantities in the same material 1181. It cannot be stressed 
enough that this is a response to an infinitesimal perturbation 1191, like a 
small temperature jump or pressure jump applied to an equilibrated liquid. 
For most materials, it is found that the average relaxation time r has 
non-Arrhenius behavior with an activation enthalpy that increases rapidly as 
the temperature is lowered. 

Another co~only used expression to describe the temperature depen- 
dence of the average relaxation time is that proposed by Adam and Gibbs 

(AG) [201, 

r = A exp[ Ap,f/kTS,] (31 

where S, is the macroscopic confi~ation~ entropy which reflects the 
actual structure of the liquid. The quantity Ap is the chemical potential per 
molecule hindering the cooperative rearrangement of a group of molecules 
(namely a cluster), and SF is the configurational entropy of the smallest 
cluster that can undergo a rearrangement. The configurational entropy S, is 
defined as the entropy of the metastable liquid relative to that of the stable 
crystal at the same temperature. Often, it is found that extrapolations of 
entropy data to temperatures below the experimental glass transition tem- 
perature Ta predict that the configurational entropy vanishes at the Kauz- 
mann temperature T, at which point the constituent molecules take the 
amorphous ground-state configuration [20]. Controversy remains as to what 
may occur at To. The AG entropy theory suggests that the dramatic increase 
in the structural relaxation time of a liquid at low temperatures is caused by 
a thermodynamic singularity at T,. The temperature is related to the heat 
capacity jump AC, at Tg, the difference in the heat capacities of the liquid 



and crystal at Ts, by the following equation, 

1 
r,w ACp 

TO 
T dT=A,,S 

where A,,S is the entropy of fusion at &,. Integration shows that the 
Kauzmann temperature To of butyronitrile is 81.2 K. Naturally the dif- 
ference between the temperatures To and Tg depends on the magnitude of 
ACP and A,$. Liquids with high AC, values, as in the present case, were 
called “fragile” by Angel1 1211 because they have structures which degrade 
rapidly on warming around Tg. Equation (3) has been applied successfully to 
many monomeric and polymeric glasses both near equilibrium [20] and far 
from equilibrium [22]. 

RESULTS AND DISCUSSIONS 

Eva~~at~~~ of effective relaxation times 

Figure 1 reproduces from ref. 7 the heat capacities of butyronitrile in 
various states of aggregation. The measurement is based on a discontinuous 
heating mode under adiabatic conditions. Solid circles stand for the values 
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Fig. 1. Molar heat capacities of butyronitrile reproduced from a previous paper [7]. Open 
circles stand for the data of crystal and liquid, solid circles for those of glass and undercooled 
liquid, and a broken line for the assumed temp~ature dependence of heat capacity of the 
undercooled liquid at equilibrium. Ts and To denote the glass transition and the Kauzmann 
temperatures, respectively. 
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Fig. 2. Configurational enthalpy versus temperature followed in the measurements. The 
“Equil. C.” line was derived from the assumed equilibrium heat capacities shown by the 
broken line in Fig. 1. 

of the undercooled liquid and non-crystalline solid, and open circles for 
those of the equilibrium liquid and crystal. Owing to the small size of the 
sample (about 0.02 mol), the accuracy of the results is inferior to that 
obtained by standard calorimetry with a large amount of sample. To 
overcome the lack of heat capacity data in the wide ‘~~st~liza~on-danger- 
ous’ temperature range of this material, we assumed that the hypotheti~~ 
equilibrium heat capacity of the undercooled liquid could be found by 
joining smoothly the values immediately above the glass transition and 
fusion temperatures (broken line in Fig. 1). The dot-dash line approximates 
the heat capacities of the glass without the glass transition and represents 
the contribution from the relevant vibrational degrees of freedom in the 
non-crystalline state, as assessed from the crystal heat capacity multiplied by 
an appropriate factor. 

Figure 2 shows the configurational enthalpies of various states of 
butyronitrile based on the corresponding heat capacity data. Adiabatic 
calorimetry was used to measure the enthalpy of the material as a Function 
of temperature. From this, the heat capacity was calculated after correcting 
for temperature drift arising from residual heat leakage and enthalpy relaxa- 
tion [23]. If the enthalpy of a sample in a non-equilibrium state relaxes 
towards the equilibrium value, the process can be monitored by observing 
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the spontaneous change of calorimetric temperature in the equilib~um 
period under adiabatic conditions. A decrease of sample enthalpy reveals 
itself as a spontaneous temperature rise and vice versa. In this study, the 
temperature drifts were treated in the heat capacity calculations as if they 
arise solely from heat leakage, so that the obtained result is equivalent to the 
‘instantaneous’ heat capacity and contains no contribution from the relaxa- 
tional degrees of freedom. The enthalpy of the equilibrium liquid is denoted 
in Fig. 2 as Fquil. L. and that of liquid-quenched sample as LQ. Two kinds 
of vapor-deposited samples were measured: VQl was prepared at a sub- 
strate temperature of 67 IS and VQ2 at 40 K. The reference value for the 
configurational enthaIpy was taken to be the value for the LQ sample at the 
temperature at which the spontaneous temperature drifts change from being 
positive to being negative. This occurs when the enthalpy curves of the 
actual and equilibrium states cross each other. 

The enthalpy-temperature relation of each non-equilibrium state was 
calculated using successive backward integrals of the temperature drift rate 
with respect to time, and addition of the supplied electric energy in each 
heating period from the temperature of the equilib~um liquid to the point 
being determined. The curves give the thermodynamic paths which the 
respective samples followed in the actual heat capacity measurements. The 
horizontal segments of each curve correspond to the temperature rise owing 
to Joule heating with quasi-isoconfiguration, while the vertical segments 
correspond to the quasi-isothermal enthalpy relaxation toward the equi- 
librium liquid. The rather long vertical segments in the VQl and VQ2 
samples indicate that the spontaneous temperature drifts of the samples 
were followed over a long period. 

Figure 2 enabled us to estimate the fictive temperature T,, [8] of each 
non-crystalline sample. This quantity is a measure of the deviation of a 
system from equilibrium and is a single-order parameter. It is defined as the 
temperature at which the configuration of the liquid would be at equi- 
librium. Thus the value of Eli, of the VQ2 sample is 134 K, that of VQl is 
119 K, and that of LQ is 100 K. These values can be compared with the 
conventionally defined Ts, 97 IS. The results indicate that the vapor-deposi- 
tion technique produces a non-crystalline state which deviates farther from 
the eq~~b~urn liquid produced by the liquid-cooling method. 

The rate of enthalpy relaxation was analyzed by the following equation 
with an effective relaxation time ~.rr 

dAH(t)/dt= -AH(t),&(t) (5) 

where AH(t) is the excess enthalpy at time t that can relax toward the 
equilibrium value. The left-hand side of the equation, dAH(t)/dt, can be 
calculated by multiplying the experimental heat capacity with the tempera- 
ture drift rate at each time. As an example, the decay of the configurational 
enthalpy observed at 95 K for the VQl sample is shown in Fig. 3 as a 
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Fig. 3. Enthalpy relaxation rate observed at 95.0 K. 

function of time. ne slope of the curve at each moment corresponds to the 
left-hand side of eqn. (S), dAH(t)/dt. The relation of the effective relaxa- 
tion time to the temperature for each sample thus determined is shown in 
Fig. 4. All the values of r,,, range from 10” to lo7 s, conforming to the 
time-scale of the calorimetric obse~ation. Open and solid circles represent 
the results of two series of measurements for the LQ sample. Since the 
samples in both series approach the eq~~~b~urn state with increasing short- 
range order on heating, the curves are convex. Such an observation carmot 
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Fig. 4. Temperature dependences of effective relaxation times which LQ, VQl and VQZ 
samples followed on heating. 
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Fig. 5. Changes of the effective relaxation times at 83.8 (A), 89.7 (0) and 95.0 K (0) with time, 
indicating non-exponenti~ enthalpy relaxations of vapor-deposits butyronitrile. 

be explained simply using equilibrium properties as in the VTF equation 

(eqn. (1)). 
Nearly vertical segments in the plots of VQl and VQ2 show that the ~~~~ 

becomes long during annea~ng at these points. Figure 5 shows details of 
changes in the relaxation times when the temperature of the VQl sample 
was maintained quasi-isothermally for a long period at 83.8 K, 89.7 K and 
95.0 K. Obviously, the relaxation time is not constant, with relaxation taking 
place faster than the exponential relaxation in the initial stages and slower 
than it in the final stages. These data correspond to Ko~rausc~s observa- 
tion [14] that the relaxation time changes with time. Hereafter, only the data 
for the enthalpy relaxation of the VQl sample measured at these three 
temperatures are used in the analysis. 

Analysis of the relaxation by use of the KWW equation 

The fractional exponent /3 of the relaxation function can be evaluated by 
a direct application of the KWW equation to the enthalpy relaxation curve 
as shown in Fig. 3. When the equation is transformed into the following 
form, the exponent /3 is given explicitly as the slope of the plot of the 
left-hand side versus log( t/s). 

log{log~A~(O)/A~(~)~ Z = P log(f/s) 6) 
Results from the analysis of the data are shown in Fig. 6. In the curve 
fitting, t was replaced by t - to. Here, t,, is an adjustable constant, since the 
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Fig. 6. Fitting of the exothermic enthalpy relaxation process in terms of the KWW equation. 

origin of time in the actual experiment is ambiguous in relevance to the 
application of the exponent. All the data gave straight lines at the tempera- 
tures studied. The exponent p at 83.8 K is 0.07, very different from unity. 
As the temperature is raised, it increases to 0.11 at 89.7 K and 0.21 and 95.0 
K. 

Analysis of the relaxation by me of the AG equation 

Application of the AG equation (eqn. (3)) to the relaxation process 
requires values for the macroscopic configurational entropy SC at each 
moment of relaxation in addition to the effective relaxation times as plotted 
in Fig. 5. This quantity cannot be measured directly by calorimetry. Thus, 
the quantity SC has first to be assessed from the relation of the configura- 
tional enthalpy versus the temperature. Figure 7 illustrates the evaluation 
procedure used in the present work. The upper and lower portions of Fig. 7 
show the configurational enthalpy and entropy plotted against temperature, 
respectively. A dot-and-dash curve in each portion represents the tempera- 
ture dependences at equilibrium; these were calculated from the under- 
cooled-liquid heat capacity given by the broken line in Fig. 1. Solid arrows 
in the upper portion of Fig. 7 show the enthalpy relaxations observed in the 
actual experiment. From this plot, the fictive temperature T,, of the speci- 
men was derived as the temperature at which the equilibrium system would 
have the same configurational enthalpy as the non-equilibrium state under 
observation. The equilibrium configurational entropy SC at TfiC can be easily 
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Fig. 7. Diagram showing the procedure for estimating the configurational entropy from the 
configurational enthalpy. 

calculated from its dependence on temperature, as illustrated in the lower 
portion of the figure. The quantity SC thus obtained at each moment of 
relaxation process was used in the application of the AG equation. This 
procedure assumes that systems with the same configurational enthalpy have 
the same configurational entropy, even if they are at different ambient 
temperatures and/or they have experienced different thermal histories. In 
other words, it assumes that the system in a non-equilibrium state relaxes 
along the dot-and-dash line which represents the temperature dependence of 
the equilibrium state. 

The AG equation (eqn. (3)) can be rearranged into the following form by 
taking logarithms of both sides 

log r,, = log A + ( A/&?'X,) (7) 
Figure 8 shows plots of log Teff versus (T$.)-’ at the three different 
temperatures. The values of abscissa and ordinate were determined experi- 
mentally and a fitting parameter was not used in the analysis. The plots at 
each temperature are nearly straight lines implying that the numerator of the 
second term of the right-hand side in eqn. (7), A,&, is almost constant 
during the relaxation at each temperature. Increasing temperature causes the 
slope and therefore the quantity ADS,* to reduce. 

Comparison with other results 

The KWW equation was applied to the relaxation behavior of glassy 
materials near the equi~brium state. Equation f2) has been shown to provide 
a good description of mechanical and dielectric relaxations (241, of enthalpy 
relaxation [25], and of light scattering [26] over a wide variety of materials. 
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Fig. 8. Application of the AG equation to the exothermic relaxation process. 

For nonpolymeric liquids, p usually lies between 0.3 and 0.8, with 0.5 being 
a typical value. 

The same equation was found in the present analysis to describe the 
enthalpy relaxation of vapor-deposited non-crystalline samples of solid 
butyronitrile far from equilibrium. The derived fractional exponent revealed 
the highly non-exponential nature of the relaxation. The samples were 
deposited at the substrate temperatures of 67 IS (VQl) and 40 K (VQZ), 
both being lower than the Kau~ann temperature (81.2 K). The large 
deviation of fi from unity indicates that the vapor-deposited sample con- 
tains various sizes of clusters with different relaxation times for molecular 
rearrangement. 

The Cole-Davidson parameter &, of pure liquid is known to deviate 
gradually from unity in the equilib~um state as the temperat~e decreases 
1273. This is caused by a spread in the distribution of relaxation times owing 
to inhomogeneity in the structure with different local short-range order. The 
temperature dependence of parameter the j3 is considered to show the same 
trend as that of &n, as exemplified by a dielectric study on poly(viny1 
acetate) [28]. Thus, the extremely small value of /I is considered to be 
evidence that the sample is located far from equilibrium with diverse 
short-range order. Indeed, Angel1 [29] observed that the non-exponentiality 
parameter /3 depended on the magnitude of the departure from equilibrium 
for the mechanical relaxation of 3KN0, .2Ca(NO,), glass. 

It is interesting to note that the KWW equation can be applied to the 
relaxation that occurs in the KCN-KBr solid solution ]30]. In this case, the 
one component crystal KCN exhibits an orientational order-disorder transi- 
tion. The replacement of the orientationally anisotropic molecular ions with 
the isotropic species lowers the temperature of the ordering transition and 
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leads ultimately to a frozen-in state of the orientational degrees of freedom 
above some threshold concentration [31]. The enthalpy relaxation from the 
non-equilibrium to the equilibrium state with respect to the CN- reorienta- 
tion in the solid solution can be well expressed by the KWW equation with 
p ranging from 0.57 to 0.71. This value might arise from the distribution of 
the relaxation times caused by locally non-uniform compositions as well as 
by different sizes of the cooperative regions. Thus, the KWW equation has 
proved to be of wide applicability to relaxation processes in non-cryst~line 
as well as crystalline solids. 

Most of the structural relaxations have been conducted at modest depar- 
tures from equilibrium. Scherer [22] has applied the AG equation to the 
volume relaxation data of an oxide glass located far from equilibrium [32]. 
The sample glasses were quenched rapidly from high temperatures to far 
below Tg (816 K). The highest fictive temperature of their samples was 881 
K and the observation of volume relaxation was conducted at 773, 723 and 
623 K. The estimated T, value was 436 K. Scherer concluded that the AG 
equation is valid for the samples far from equilibrium. These values for their 
glass samples should be compared with the present vapor-deposited sample; 
T,, (the highest) = 134 K, rg = 97 K, To = 81.2 K and observation tempera- 
tures 83.8, 89.7 and 95.0 K. A comparison of the numerical values indicates 
the high effectiveness of extracting the thermal energy of the molecules 
during the vapor-deposition. 

In Scherer’s analysis, the quantity Ap, which is the potential barrier per 
molecule hindering rearrangement in the cooperative cluster, was treated as 
a fixed parameter independent of the ambient temperature. The present 
analysis revealed a weak dependence of Ap on the ambient temperature. In 
the AG entropy theory, the average size of the cooperational cluster is 
inversely proportional to the configurational entropy [33]. The activation 
energy ‘ per molecule’, A~_L, will increase or decrease with the average size of 
cluster depending on how the potential barrier for the structural relaxation 
changes with the cluster size. 

Summarizing the results, we conclude that the KWW relaxation function 
and the AG equation can describe the quasi-isothermal enthalpy relaxation 
of a vapor-deposited non-crystalline sample of solid butyronitrile far from 
equi~b~um. 

CONCLUDING REMARKS 

Vapor deposition is the most widely successful method of preparing 
materials in a non-crystalline state. The kinetic energy of the depositing 
molecules is dissipated so quickly that the molecules do not have sufficient 
time to organize themselves into ordered arrangements at low temperatures. 
In spite of the efficiency, however, thermodyna~c characte~zation of 
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vapor-deposited non-crystalline solids has rarely been carried out in the past 
[34,35]. This may be partly a result of the experimental difficulty of 
producing even a small quantity of the non-crystalline solid, and partly to 
the laborious and time-consu~ng nature of the heat capacity measure- 
ments. 

We conclude here that the non-crystalline sample of butyronitrile pre- 
pared by vapor deposition exhibits essentially the same phenomena as the 
non-crystalline solid obtained by liquid-cooling. These are the glass transi- 
tion, residual entropy, enthalpy relaxation and crystallization phenomena. 
All these common features reflect the metastability and non-equilibrium 
nature of the non-crystalline solid as compared to the most stable crystalline 
solid. From a quantitative viewpoint, however, the non-crystalline solids 
behave differently. The VQ samples show the enthalpy relaxation occurring 
far below the Kauzmann temperature and have extremely high fictive 
temperatures compared to that of the LQ sample. The KWW and AG 
equations have proved to be successful in describing the enthalpy relaxation 
behavior of the non-c~stalline solids near to, as well as far from, equi- 
librium. It should be stressed that non-crystalline solids have to be char- 
acterized by their microscopic structures and by their thermodynamic prop- 
erties rather than by the method by which they are prepared. 

The unique advantage of calorimetry, especially low-temperature adia- 
batic calorimetry, is that the method provides a wealth of information on the 
entropy and enthalpy aspects of the non-crystalline solid relative to those of 
crystalline solid of the same material. Thus, an accurate calorimetric study 
can be important for the thermodynamic characterization of non-crystalline 
solids obtained by many unconventional techniques other than the classical 
liquid cooling. 
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